Preview

Universum Humanitarium

Advanced search

Possibilities of Application of Synchrotronic Analysis Methods in the Study of Archaeological Materials

Abstract

The modern level of research of archaeological materials requires the involvement of a set of methods, including natural sciences. Among the latter, synchrotron methods of analysis of matter occupy a special place. Thise group of metods began to be used in archeology at the beginning of the 21st century, occupy a special place. This article provides an overview of synchrotron methods for analyzing archaeological materials that combine high accuracy, multitasking, and comparative accessibility. The authors consider the following methods: synchrotron X-ray diffraction, X-ray fluorescence, X-ray absorption of ideal structures, synchrotron tomography, synchrotron infrared spectrometry, Raman spectrometry. Descriptions of the physical basis of the methods are given. The advantages and disadvantages of the methods are evaluated, examples of their use in the study of archaeological material are given. The review was performed on the published research materials of the Elettra Synchrotron Trieste S.C.p.A. (Italy). The difference between the synchronous methods and their analogues based on alternative radiation sources is noted. Synchrotron analysis methods for the most part are not unique and have the same common drawback as the vast majority of non-synchrotron methods - the need for sampling, which leads to fragmentation of the artifact. However, the use of synchrotron radiation can significantly improve the accuracy, quality of data, speed up the process of collecting information, present data in an alternative form.

About the Authors

R. V. Davydov
Novosibirsk State University
Russian Federation

Davydov Roman V., Junior Scientist, Humanitarian research laboratory, Humanitarian Institute; engineer, engineer, Project «New Archaeology»

1 Pirogova st., Novosibirsk 630090

 



Yu. S. Gubar
Novosibirsk State University
Russian Federation

Gubar Yulia S., graduate student, Humanitarian Institute

1 Pirogova st., Novosibirsk 630090



F. Zanini
Elettra-Sincrotrone Trieste S.C.p.A
Italy

Zanini Franco, PhD, Senior Scientist

Strada Statale 14 – km 163,5 in AREA Science Park, 34149, Basovizza, Trieste



References

1. Agresti J., Mencaglia A. A., Siano S. Development and application of a portable LIBS system for haracterizing copper alloy artefacts. Anal. Bioanal. Chem., 2009, No 395, pp. 2255–2262.

2. Anderson G., Fregni V. Technology as a tool for archaeological research and artifact conservation. AIC Objects Specialty Group Postprints, 2009, Vol. 16, pp. 95–109.

3. Artioli G. Science for the cultural heritage: the contribution of X-ray diffraction. Rend. Fis. Acc. Lincei., 2013, Vol. 24, pp. S55–S62.

4. Becker L., Pilosi L., Schorsch D. An Egyptian Silver Statuette of the Saite Period – A Technical Study. Metropolitan Museum Journal, 1994, Vol. 29, pp. 37–56.

5. Bell I. M., Clark R. J. H., Gibbs P. J. Raman spectroscopic library of natural and synthetic pigments (pre-~1850 AD). Spectrochimica Acta, 1997, Part A, 53, pp. 2159–2179.

6. Bernardini F., Tuniz C., Coppa A., Mancini L., Dreossi D., Eichert D., Turco G., Biasotto M., Terrasi F., De Cesare N., Hua Quan, Levchenko V. Beeswax as Dental Filling on a Neolithic Human Tooth. PLoS ONE, 2012, Vol. 7 (9), P. e44904.

7. Bernardini F., Tuniz C., Zanini F. X-Ray Computed Microtomography for Paleoanthropology, Archaeology, and Cultural Heritage. In: Nanotechnologies and Nanomaterials for Diagnostic, Conservation, and Restoration of Cultural Heritage, Elsevier, 2018, pp. 25–45.

8. Bertrand L., Cotte M., Stampanoni M., Thoury M., Marone F., Schöder S. Development and trends in synchrotron studies of ancient and historical materials. Physics Reports, 2012, Vol. 519, pp. 51–96.

9. Bertrand L., Robinet L., Thoury M., Janssens K.,·Cohen S. X.,·Schöder S. Cultural heritage and archaeology materials studied by synchrotron spectroscopy and imaging. Applied Physics A, 2011, Vol. 106 (2), pp. 377–396.

10. Birarda G., Di Pietro P., Perucchi A, Lupi S., Vaccari L. Infrared Spectral Imaging with Synchrotron Radiation. Synchrotron Radiation News, 2017, Vol. 30 (4), pp. 3–4.

11. Bertrand L., Cotte M., Stampanoni M., Thoury M., Marone F., Schöder S. Development and trends in synchrotron studies of ancient and historical materials. Physics Reports, 2012, Vol. 519, pp. 51–96.

12. Bonaduce I., Andreotti A. Py-GC/MS of Organic Paint Binders. In: Organic Mass Spectrometry in Art and Archaeology. New York: John Wiley & Sons, 2009, pp. 303–326.

13. Bozzini B., Gianoncelli A., Mele C., Siciliano A., Mancini L. Electrochemical reconstruction of a heavily corroded Tarentum hemiobolus silver coin: a study based on microfocus X-ray computed microtomography. Journal of Archaeological Science, 2014, Vol. 52, pp. 24–30.

14. Callewaert M. Les couleurs des artéfacts en alliage cuivreux: analyse physico-chimique des techniques de coloration utilisées du Chalcolithique au Haut Moyen-Âge en Europe et au Proche-Orient. Archéo-Situla, 2010, Vol. 20, pp. 42–60.

15. Clark R. J. H. Raman microscopy as a structural and analytical tool in the fields of art and archaeology. Journal of Molecular Structure, 2007, Vol. 834–836, pp. 74–80.

16. Clementi C., Ciocan V., Vagnini M. Non-invasive and microdestructive investigation of the Domus Aurea wall painting decorations. Anal. Bioanal. Chem., 2011, Vol. 401 (6), pp. 1815–1826.

17. Crupi V., Galli G., La Russa M. F., Longo F., Maisano G., Majolino D., Malagodi M., Pezzino A., Ricca M., Rossi B., Ruffolo S. A., Venutiet V. Multi-technique investigation of Roman decorated plasters from Villa dei Quintili (Rome, Italy). Applied Surface Science, 2015, Vol. 349, pp. 924–930.

18. Crupi V., La Russa M. F., Venuti V., Ruffolo S., Ricca M., Paladini G., Albini R., Macchia A., Denaro L., Birarda G., Bottari C., D’Amico F., Vaccari L., Majolino D. A combined SR-based Raman and InfraRed investigation of pigmenting matter used in wall paintings: The San Gennaro and San Gaudioso Catacombs (Naples, Italy) case. The European Physical Journal Plus, 2018, Vol. 133 (9), pp. 369.

19. Derrick M. R., Stulik D. C., Landry J. M. Infrared spectroscopy in conservation science. Los Angeles: Getty Conservation Institute, 1999, 252 p.

20. Devlet E. G., Greshnikov E. A., Fakhri A. I. Study of Mesoamerican pigments of the Pre-Columbian period in rock art and cave painting by the natural science methods. Bulletin of the Kemerovo State University, 2015, No. 2 (62), vol. 6, P. 18–23. (In Russ.)

21. Doncheva S. Metal Art Production in Medieval Bulgaria: Jewelry craftsmanship in Bulgaria at the Middle Ages. Saarbrūken (Germany): LAP LAMBERT Academic Publishing, 2012, 161 p.

22. Dubrovskii D. K., Grachev V. Yu. Ural'skie pisanitsy v mirovom naskal'nom iskusstve. Ekaterinburg: «Grachev i partnery», 2010, 212 p. (In Russ.)

23. Fedrigo A., Grazzi F., Williams A.R., Panzner T., Lefmann K., Lindelof P. E., Jørgensen L., Pentz P., Scherillo A., Porcher F., Strobl M. Extraction of archaeological information from metallic artefacts. – A neutron diffraction study on Viking swords. Journal of Archaeological Science: Reports, 2017, Vol. 12, pp. 425–436.

24. Gianoncelli A., Kourousias G., Merolle L., Altissimo M., Bianco A. Current status of the TwinMic beamline at Elettra: a soft X‐ray transmission and emission microscopy station. Journal of Synchrotron Radiation, 2016, Vol. 23 (6), pp. 1526–1537.

25. Grenberg Yu .I. Tekhnologiya i issledovanie proizvedenii stankovoi i nastennoi zhivopisi. Moscow: GOSNIIR, 2000, 132 p. (In Russ.)

26. Horvath E., Kovacs J. S., Toth M. An Early Medieval buckle with cloisonné decoration: the localization of workshop area by archaeometrical investigation. Archeometriai Műhely, 2009, No 4, pp. 15–30.

27. Khavrin S. V. Drevneishii metall Sayano-Altaya (eneolit–rannyaya bronza). Izvestiya AltGU, 2008, Vol. 4–2, pp. 210–216. (In Russ.) Klein L. S. Arkheologiya sporit s fizikoi. Priroda, 1962, № 2, pp. 51–63. (In Russ.)

28. Kolchin B. A. Chernaya metallurgiya i metalloobrabotka v Drevnei Rusi (Domongol'skii period). Moscow: AS SSSR Publ., 1953, 257 p. (In Russ.)

29. Kolchin B. A., Sher Ya. A. Nekotorye itogi primeneniya estestvennonauchnykh metodov v arkheologii. KSIA, 1969, No 118, pp. 83–101. (In Russ.)

30. Kotov V. G., Lyakhnitskii Yu. S., Piotrovskii Yu. Yu. Metodika naneseniya sostava krasochnogo sloya risunkov peshchery Shul'gan-Tash (Kapovoi). The Ufa Archaeological Herald, 2004, Iss. 5, pp. 65–72. (In Russ.)

31. Lbova L. V., Volkov P. V. Pigment decoration of Paleolithic Antropomorhic Figerines from Siberia. Rock Art Research, 2017, Vol. 34, No. 2, pp. 169–178.

32. Lenkov V. D. Metallurgiya i metallobrabotka u chzhurchzhenei v XII veke (po materialam issledovanii Shaiginskogo gorodishcha). Novosibirsk: Nauka, 1974, 196 p. (In Russ.)

33. Martynov A. I., Sher Ya. A. Metody arkheologicheskogo issledovaniya. Moscow: Vysshaya Shkola, 1989, 223 p. (In Russ.)

34. McArthur G., Taylor J.H., Craddock P. The conservation and technical investigation of a hollow-cast Egyptian bronze. Technical Research Bulletin, 2015, Vol. 9, pp. 111–120.

35. Merkel S. W. Archaeometallurgical analysis of metalworking debris from a Germanic goldsmithing workshop at Elsfleth-Hogenkamp, 2nd-3rd century AD. In: Archaometrie und Denkmalpflege 2018 (Hamburg, 20–24 Marz 2018). Hamburg: Verlag Deutsches Elektronen-Synchrotron, 2018, pp. 95–98.

36. Morozov M. V., Lyakhnitskii Yu. S. Ramanovskaya spektroskopiya paleoliticheskikh okhr Kapovoi peshchery (Yuzhnyi Ural, Rossiya). In: Sovremennaya mineralogiya: ot teorii k praktike: Materialy XI s"ezda RMO. Saint Petersburg, 2010, pp. 355–357. (In Russ.)

37. Nava A., Coppa A., Coppola D., Mancini L., Dreossi D., Zanini F., Bernardini F., Tuniz C., Bondioli L. Virtual histological assessment of the prenatal life history and age at death of the Upper Paleolithic fetus from Ostuni (Italy). Scientific Reports, 2017, Vol. 7 (1), pp. 1–10.

38. Nesterov S. P., Savin A. N., Kolmogorov Yu. P. Early Medieval Jeweler’s Kit from the Western Amur Region. Archeology, Ethnography and Anthropology of Eurasia, 2016, Vol. 44, No. 2, pp. 81–90.

39. Omid O., Davami P. Metallography and microstructure interpretation of some archaeological tin bronze vessels from Iran. Materials Characterization, 2014, Vol. 97, pp. 74–82.

40. Pakhunov A. S., Zhitenev V. S., Brandt N. N., Chikishev A. Yu. Predvaritel'nye rezul'taty kompleksnogo issledovaniya krasochnykh pigmentov nastennykh izobrazhenii Kapovoi peshchery. Vestnik arheologii, antropologii i etnografii, 2014, Vol. 4, pp. 4–15. (In Russ.)

41. Philip G. Metalwork from mortuary contexts at Jerablus. In: Mortuary practices at an Bronze Age fort on the Euphrates river. Oxford, Philadelphia: Oxbow Books, 2015, pp. 127–143.

42. Pillay A. E. Analysis of archaeological artefacts: PIXE, XRF or ICP-MS? Journal of Radioanalytical and Nuclear Chemistry, 2001, Vol. 247, Issue 3, pp. 593–595.

43. Plaisier J. R., Nodari L., Gigli L., Rebollo San Miguel E. P., Bertoncello R., Lausi A. The X-ray diffraction beamline MCX at Elettra: a case study of non-destructive analysis on stained glass. ACTA IMEKO, 2017, Vol. 6 (3), pp. 71–75.

44. Popelka-Filco-R. S. Novel application of X-ray fluorescencemicroscopy (XFM) for the non-destructivemicro-elemental analysis of natural mineralpigments on Aboriginal Australian objects. The Analyst, 2016, Vol. 141 (12), pp. 24–35.

45. Prokhorov A. M. Fizicheskaya entsiklopediya. T. 4. Moscow: Bol'shaya sovetskaya entsiklopediya, 1994, 701 p. (In Russ.)

46. Quartieri S. X-Ray Absorption Spectroscopy (XAS, EXAFS, XANES). The Encyclopedia of Archaeological Sciences, 2018, Vol. 4, pp. 1–6.

47. Radlov V. V. Sibirskie drevnosti: iz putevykh zapisok po Sibiri. Saint Petersburg: Tipografiya I.N. Skorokhodova, 1896, 70 p. (In Russ.)

48. Rodrigues G. C., Fermo P., Olivi L., Padeletti G. A comparative study of Hispano-Moorish and Italian Renaissance lustred majolicas by using X-ray absorption spectroscopy. J. Anal. At. Spectrom., 2015, Vol. 30–3, pp. 738–744.

49. Salvadó N., Pradell T., Pantos E., Papiz M. Z., Molera J., Seco M., Vendrell M. Identification of copper-based green pigments in Jaume Huguet's Gothic altarpieces by Fourier transform infrared microspectroscopy and synchrotron radiation X-ray diffraction. Journal of Synchrotron Radiation, 2002, Vol. 9, pp. 215–222.

50. Sano K., Arrighi S., Stani C., Aureli D., Boschin F., Fiore I., Spagnolo V., Ricci S., Crezzini J., Boscato P., Gala M., Tagliacozzo A., Birarda G., Vaccari L., Ronchitelli A., Moroni A., Benazzi S. The earliest evidence for mechanically delivered projectile weapons in Europe. Nature ecology & evolution, 2019, Vol. 3, pp. 1409–1414.

51. Scott D. A. Metallography and Microstructure of Ancient and Historic Metals. USA, CA: Marina del Rey, 1991, 185 p.

52. Shackley M. S. An Introduction to X-Ray Fluorescence (XRF) Analysis in Archaeology. In: X-ray fluorescence spectrometry (XRF) in geoarchaeology. New York: Springer, 2011, pp. 7–44.

53. Shemakhanskaya M., Treister M., Yablonsky L. The technique of gold inlaid decoration on the 5th-4th centuries BC silver and iron finds from the early Sarmatian barrows of Filippovka, Southern Urals. ArcheoSciences, revue d’archéométrie, 2009, Vol. 33, pp. 211–220.

54. Shirkin L. A. Rentgenofluorestsentnyi analiz ob"ektov okruzhayushchei sredy: uchebnoe posobie. Vladimir: Vladimir State University Publ., 2009, 65 p. (In Russ.)

55. Shirokov V. N. Drevneishee iskusstvo ural'skikh peshcher. Ekaterinburg: Sredne-Ural'skoe knizhnoe izd-vo, 1995, 39 p. (In Russ.)

56. Siano S., Bartoli L. Non-destructive investigation of bronze artefacts from The Marches National Museum of archaeology using neutron diffraction. Archaeometry, 2006, Vol. 48, No. 1, pp. 77–96.

57. Smith G. D., Clark R. J. H. Raman microscopy in archaeological science. Journal of Archaeological Science, 2004, Vol. 31, pp. 1137–1160.

58. Tishkin A. A., Seregin N. N. Metallicheskie zerkala kak istochnik po drevnei i srednevekovoi istorii Altaya (po materialam Muzeya arkheologii i etnografii Altaya Altaiskogo gosudarstvennogo universiteta). Barnaul: Azbuka, 2011, 144 p. (In Russ.)

59. Tuniz C., Zanini F. Microcomputerized Tomography (MicroCT) in Archaeology. In: Encyclopedia of Global Archaeology, Springer, New York, 2014, pp. 1–7.

60. Uda M., Demortier G., Nakai I. X-Rays for Archaeology. Netherlands: Springer, 2005, 320 p. Vagner G. A. Nauchnye metody datirovaniya v geologii, arkheologii i istorii. Moscow: Tekhnosfera, 2006, 534 p. (In Russ.)

61. Valério P., Silva R.J.C., Araújo M. F., Monge Soares A. M., Barros L. A multianalytical approach to study the Phoenician bronze technology in the Iberian Peninsula. – A view from Quinta do Almaraz. Materials Characterizatio, 2012, Vol. 67, pp. 74–82.

62. Zanolli C., Martinón-Torres M., Bernardini F., Boschian G., Coppa A., Dreossi D., Mancini L., Martínez de Pinillos M., Martín-Francés L., Bermúdez de Castro J. M., Tozzi C., Tuniz C., Macchiarelli R. The Middle Pleistocene (MIS 12) human dental remains from Fontana Ranuccio (Latium) and Visogliano (Friuli-Venezia Giulia), Italy. A comparative high-resolution endostructural assessment. PLoS One, 2018, Vol. 13 (10), pp. 1–25.

63. Zinyakov N. M. Chernaya metallurgiya i kuznechnoe remeslo Zapadnoi Sibiri. Kemerovo: Kuzbassvuzizdat, 1997, 368 p. (In Russ.)

64. Zinyakov N. M. Istoriya chernoi metallurgii i kuznechnogo remesla drevnego Altaya. Tomsk: TGU Publ., 1988, 276 p. (In Russ.)

65. Zipkin A. M., Hanchar J. M., Brooks A. S., Grabowski M., Thompson J., Gomani-Chindebvu E. Ochre fingerprints: Distinguishing among Malawian mineral pigment sources with Homogenized Ochre Chip LA–ICPMS. 2014. Archaeometry, 2015, Vol. 58, pp. 297–317.

66. Zykov A. P. Tekhnologiya kuznechnogo proizvodstva v Verkhnem Prikam'e v nachale II tysyacheletiya n.e. (po materialam rodanovskikh i sylvenskikh pamyatnikov). In: Novye arkheologicheskie issledovaniya na territorii Urala. Izhevsk: Udmurtskii universitet, 1987, pp. 145–155. (In Russ.)


Review

For citations:


Davydov R.V., Gubar Yu.S., Zanini F. Possibilities of Application of Synchrotronic Analysis Methods in the Study of Archaeological Materials. Universum Humanitarium. 2020;(2):82-106. (In Russ.)

Views: 527


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2499-9997 (Print)